Discrete Mathematics: Combinatorics and Graph Theory

Homework 3: Due 12/2

Instructions. Solve any 10 questions. Typeset or write neatly and show your work to receive full credit.

1. Find a formula for a_{n} given the stated recurrence relation and initial values:
(a) $a_{n}=3 a_{n-1}-2$ for $n \geq 1$ with $a_{0}=1$.
(b) $a_{n}=a_{n-1}+2 a_{n-2}$ for $n \geq 2$ with $a_{0}=1, a_{1}=8$.
(c) $a_{n}=2 a_{n-1}+3 a_{n-2}$ for $n \geq 2$ with $a_{0}=a_{1}=1$.
(d) $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2$ with $a_{0}=1, a_{1}=3$.
(e) $a_{n}=3 a_{n-1}-1$ for $n \geq 1$ with $a_{0}=1$.
2. Find a recurrence relation for the number of ternary strings of length n that contain either two consecutive 0s or two consecutive 1s.
(a) What are the initial conditions?
(b) How many ternary strings of length six contain two consecutive 0 s or two consecutive 1s?
3. A bus driver pays all tolls, using only nickels and dimes, by throwing one coin at a time into the mechanical toll collector.
(a) Find a recurrence relation for the number of different ways the bus driver can pay a toll of n cents (where the order in which the coins are used matters).
(b) In how many different ways can the driver pay a toll of 45 cents?
4. Show that the Fibonacci numbers satisfy the recurrence relation $f_{n}=5 f_{n-4}+3 f_{n-5}$ for $n=5,6,7, \cdots$, together with the initial conditions $f_{0}=0, f_{1}=1, f_{2}=1, f_{3}=2$, and $f_{4}=3$. Use this recurrence relation to show that $f_{5 n}$ is divisible by 5 , for $n=1,2,3, \cdots$.
5. Solve the recurrence relation $a_{n}=6 a_{n-1}-12 a_{n-2}+8 a_{n-3}$ with $a_{0}=-5, a_{1}=4$, and $a_{2}=88$.
6. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has the roots $-1,-1,-1,2,2,5,5,7$?
7. Find the solution of the recurrence relation $a_{n}=2 a_{n-1}+3 \cdot 2^{n}$.
8. Find the solution of the recurrence relation $a_{n}=4 a_{n-1}-3 a_{n-2}+2^{n}+n+3$ with $a_{0}=1$ and $a_{1}=4$.
9. Suppose $\langle a\rangle$ satisfies the recurrence $a_{n}=-a_{n-1}+\lambda^{n}$. Determine the values of λ such that $\langle a\rangle$ can be unbounded.
10. Let $a_{n}=n^{3}$. Find a constant-coefficient first-order linear recurrence relation satisfied by $\langle a\rangle$. Does there exist a homogeneous constant-coefficint first-order linear recurrence relation satisfied by $\langle a\rangle$? Why or why not?
11. Derive a general formula for the recurrence $a_{n}=c a_{n-1}+f(n) \beta^{n}$ where f is a polynomial and β a constant.
12. Let f be a polynomial of degree n. The first difference of f is the function $g=\Delta f$ defined by $g(x)=f(x+1)-f(x)$. The k-th difference of f is the function $g^{(k)}$ defined inductively by $g^{(0)}=f$ and $g^{(k)}=\Delta g^{(k+1)}$ for $k \geq 1$. Obtain a formula for the nth difference of f.
